These e-Updates are a regular weekly item from K-State Extension Agronomy and Steve Watson, Agronomy e-Update Editor. All of the Research and Extension faculty in Agronomy will be involved as sources from time to time. If you have any questions or suggestions for topics you’d like to have us address in this weekly update, contact Steve Watson, 785-532-7105 swatson@ksu.edu, or Curtis Thompson, Extension Agronomy State Leader and Weed Management Specialist 785-532-3444 cthompso@ksu.edu.

Subscribe to the eUpdate mailing list: https://listserv.ksu.edu/cgi-bin?SUBED1=EUPDATE&A=1
1. Breeding for rust resistance in wheat... 3
2. Winter/spring options for winter annual broadleaf control in wheat............... 5
3. Cover Your Acres Conference, January 17-18 in Oberlin................................... 7
5. Kansas Agricultural Technologies Conference, January 19-20 in Junction City 11
6. Prescribed Burning Workshops scheduled for 2017.. 12
8. K-State Sorghum Schools scheduled for late January and early February 2017 16
9. Western Kansas Forage Conference planned Feb. 20 in Larned.......................... 18
10. Kansas weather summary for 2016: Wet to dry.. 19
Breeding for rust resistance in wheat

Traditionally, wheat breeders have been selecting for leaf rust resistance by finding lines with strong resistance to one or more races of leaf rust. The problem has been that other races of leaf rust inevitably come along that can overcome that strong, but narrow source of resistance. If that different race of leaf rust becomes widespread in the Southern Plains, the resistant variety rapidly becomes susceptible to leaf rust. That has happened to most wheat varieties in Kansas over the years – a variety starts out being resistant to leaf rust then becomes susceptible after a few years or so.

For the past several years, we have been working on a different approach, similar to the methods used for 20 years or more by wheat breeders at CIMMYT (International Maize and Wheat Improvement Center in Mexico) to develop leaf rust resistance. This approach involves combining 3 or more minor genes for leaf rust resistance into a durable, effective, non-race-specific, slow-rusting form of resistance.

There are several of these so-called minor genes for leaf rust resistance. Two of the better known to plant pathologists and wheat breeders are “Lr34” and “Lr46.”

Most of our new crosses in the wheat breeding program in Manhattan now include minor gene resistance to leaf rust. When several of these genes are present in a line, we prefer to call this “non-race-specific resistance” because it conveys a moderate level of resistance to a wide range of known races of leaf rust, rather than strong resistance to just one or a few specific races of leaf rust.

Varieties with minor gene resistance will be susceptible to leaf rust in the seedling stage, but have durable, non-race-specific resistance in the adult stage. Varieties with a combination of at least three minor genes for leaf rust resistance will usually not be entirely free of leaf rust pustules if leaf rust is
present in the area. But the leaf rust will typically occur late in the season and with only light to moderate severity – causing relatively little, if any, yield loss. The best thing is that this type of resistance is effective against all known races of leaf rust, making it durable from year to year. Varieties with minor gene resistance should maintain a good level of leaf rust resistance year after year, without becoming fully susceptibility.

None of the newest varieties released by K-State has this kind of leaf rust resistance yet, with the possible exception of KanMark. We expect to have lines with non-race-specific, durable leaf rust resistance in advanced stages of development, or possibly ready for release, within about five years or so.

At least some of the minor genes for leaf rust resistance are also effective against stripe rust. We initially thought that varieties with minor gene, non-race-specific leaf rust resistance would also provide the same level of resistance for stripe rust. This has not turned out to be the case as these genes are somewhat less effective against stripe rust. These genes do keep stripe rust from developing as rapidly after the initial infection, but stripe rust eventually is able to become moderate to severe on these varieties. While there is some benefit to having a variety on which stripe rust develops more slowly, we believe we will need to either increase the number of minor genes used to combat stripe rust or combine them with traditional major-gene, strong resistance to specific races of stripe rust in our varieties.

Allan Fritz, Wheat Breeder
akf@ksu.edu
2. Winter/spring options for winter annual broadleaf control in wheat

There are several herbicide options for controlling winter annual broadleaf weeds in wheat. Generally, fall applications will provide the best control of winter annual weeds with any herbicide, as long as the weeds have emerged. The majority of winter annual weeds usually will emerge in the fall, although you can still have some emergence in the spring, especially if precipitation after planting is limited in the fall. However, winter annual weeds that emerge in the spring often are not very competitive with the crop, at least in years when there is a decent crop.

Some herbicides can work well even when applied during the dormant part of the season, while others perform best if the crop and weeds are actively growing. The key difference relates to the degree of soil activity provided by the herbicide. Herbicides that have good residual activity, such as Glean, Finesse, Amber, and Rave can generally be applied in January and February when plants aren’t actively growing and still provide good weed control, assuming you have proper conditions for the application. Most other herbicides, which depend more on foliar uptake, will not work nearly as well during the mid-winter months, when the wheat and weeds aren’t actively growing, as compared to a fall or early spring application. This may be especially true this year due to the colder temperatures and dieback of foliage this winter.

Spring herbicide applications can be effective for winter annual broadleaf weed control as well, but timing and weather conditions are critical to achieve good control. Spring applications generally are most effective on winter annual broadleaf weeds soon after green-up when weeds are still in the rosette stage of growth, and during periods of mild weather. Once weeds begin to bolt and wheat starts to develop more canopy, herbicide performance often decreases dramatically.

Spring-germinating summer annual weeds often are not a serious problem for a good healthy stand of wheat coming out of the winter. However, if wheat stands are thin and the wheat is very late developing, early-germinating summer annual weeds such as kochia, Russian thistle, and wild buckwheat may be a problem, especially at harvest time. Many of these weeds may be controlled by residual herbicides applied earlier in the season. If not, postemergence treatments should be applied soon after weed emergence and before the wheat gets too large in order to get good spray coverage and achieve the best results.

Another important consideration with herbicide application timing is crop tolerance at different application timings. For example, 2,4-D should not be applied in the fall or until wheat is fully tillered in the spring. On the other hand, any herbicide containing dicamba can be applied after wheat has two leaves, but should not be applied once the wheat gets close to jointing in the spring. Herbicides containing dicamba include Banvel, Clarity, Rave, Pulsar, Agility SG, and several generic dicamba products. Dicamba is one of the most effective herbicides for kochia control, but if the wheat is starting to joint, it shouldn’t be applied. At that point, Starane Ultra or other herbicides containing fluroxypyr would be a safer option and could still provide good kochia control. Most other broadleaf herbicides in wheat can be sprayed from the time that wheat starts tillering until the early jointing stages of growth, but the label should always be consulted to confirm the recommended treatment stages before application.

The best advice regarding crop safety with herbicide-fertilizer combinations and application timing is to follow the label guidelines. We generally see minimal crop injury and no yield loss from topdress
fertilizer/residual herbicide applications during the winter months. However, these combinations can often cause considerable burn to the wheat if applied when the crop is actively growing and with warmer weather. The foliar burn is generally temporary in nature and the wheat usually will recover if good growing conditions persist, but the risk of serious injury increases after wheat starts to joint.

Dallas Peterson, Weed Management Specialist
dpeterso@ksu.edu
3. Cover Your Acres Conference, January 17-18 in Oberlin

K-State Research and Extension is teaming up with the Northwest Kansas Crop Residue Alliance to host the 14th annual Cover Your Acres Winter Conference for crop producers and consultants Jan. 17-18 at the Gateway Center in Oberlin, Kansas. The same program will be offered both days of the conference.

Cover Your Acres is a producer-driven meeting focused on new ideas and research-based updates in crop production in northwest Kansas and the central High Plains region.

The conference, which typically draws more than 600 attendees from Kansas and other states, highlights the latest technology, methods and conservation practices to improve crop production in the region. This year it will feature university specialists and industry representatives discussing the following topics:

Building Strong Business Dynamics in Tough Economic Times: What Does it Take to Succeed?
Current State of Weed Resistance
Economics of Soil Fertility Management
Forage Sorghum and Cover Crop Management
Learning from Long-Term Rotation and Tillage Studies
Managing Bin-Stored Grain

Kansas State University Department of Agronomy
2004 Throckmorton Plant Sciences Center | Manhattan, KS 66506
The same programs will be offered both days of the conference. Registration will begin at 7:45 a.m.,
with educational sessions ending at 5:00 p.m. followed by a “bull session” on Tuesday evening, where
attendees can visit with industry and university specialists.

Early registration is due by Jan.11. The fee is $40 for Jan. 17, $35 for Jan. 18 or both days for $50. After
Jan. 11, the cost is $50 per day. The conference fee includes lunch and educational materials.
Continuing education unit credits are available for commercial applicators and certified crop
advisors.

Mail your registration, with a check payable to KSU, to the Northwest Area Office, ATTN: Cover Your
Acres, P.O. Box 786, Colby, KS 67701. To view the conference details and for online registration, visit
www.northwest.ksu.edu/coveryouracres. For questions, call 785-462-6281.

Major sponsors of the conference include CHS, Crop Production Services, Decatur Coop Association,
DuPont Pioneer, Hoxie Implement Co., Lang Diesel, National Sunflower Association, PacLeader
Technology, Plains Equipment Group, and SureFire Ag Systems. CCA and Commercial Applicator
CEU’s have been applied for.

Lucas Haag, Northwest Area Crops and Soils Specialist
lhaag@ksu.edu
Once again, the Great Plains Canola Association, Oklahoma State University, Kansas State University, USDA-RMA, and partners from the canola industry are teaming up to conduct Canola College.

Canola College 2017 will be held January 19, 2017 at the Chisholm Trail EXPO Center, 111 W. Purdue, Enid, OK.

This will be the premier canola education/training event in the region in 2017. Canola College 2017 is for anyone with an interest in the canola industry including: experienced and first time growers, crop insurance agents, members of agricultural governmental agencies, and canola industry service and product providers. Attendees will hear from canola experts on a variety of key topics and will have the opportunity to visit with industry members who provide the goods and services needed to produce, handle, and market the crop.

Canola College 2017 topics will include:

- **Canola Basics** – Mike Stamm, K-State Canola Breeder and Heath Sanders, OSU SW Area Extension Agronomy Specialist
- **Canola Planting Technology** – Josh Bushong, OSU NW Area Extension Agronomy Specialist and Kraig Roozeboom, K-State Cropping Systems Agronomist
- **Advanced Production Practices** – Bob Schrock, Grower, Kiowa, KS and Jeff Scott, Grower, Pond Creek, OK
- **Risk Management** – Francie Tolle, Director, USDA-RMA, Oklahoma City
- **Canola Economics** – Trent Milacek, OSU Extension Area Economist, NW District
- **Weed Control** – Misha Manuchehri, OSU Extension Weed Scientist
- **Insect Management** – Kris Giles, OSU Regents Prof of Entomology
- **Canola Plant Health Management** - John Damicone, OSU Extension Plant Pathologist and Paul De Laune, Assoc Prof, Texas A&M
- **Canola Learning Lab** – Coordinated by Josh Lofton, OSU Cropping Systems Specialist

The very popular Canola Learning Laboratory will be continued in 2017. Attendees will see demonstrations and gain experience with: canola biology, canola production equipment, and the latest in spray technology. Participants will have the opportunity to learn to identify common canola...
production pests.

Individuals can register for Canola College 2017 at www.canola.okstate.edu. For more information on Canola College, contact Ron Sholar, Executive Director, GPCA, at Jrsholar@aol.com or Josh Lofton, Extension Cropping Systems Specialist, OSU, at josh.lofton@okstate.edu.

Mike Stamm, Canola Breeder
mjstamm@ksu.edu
5. Kansas Agricultural Technologies Conference, January 19–20 in Junction City

The 20th Annual Kansas Agricultural Technologies (KARTA) Conference will be held January 19-20, 2017 in Junction City at the Courtyard by Marriott & Geary County Convention Center, 310 Hammons Dr.

This annual event brings hundreds of agricultural producers and industry leaders together for a two-day interactive workshop on the ever-changing precision agriculture industry. There will be presentations on a wide variety of topics dealing with precision agriculture. The two-day event also includes vendor displays, the KARTA Annual Meeting, research presentations from grant recipients, and an interactive evening discussion that is always an attendee favorite.

The conference is co-sponsored by K-State Research and Extension and the Kansas Agricultural Research and Technology Association, whose members are producers, university researchers, and industry professionals focused on learning about agricultural production and technological and informational changes on today’s farms.

There is a fee for this conference, and you must register. More information, including online registration is available at www.KARTA-online.org

Information is also available by contacting Lucas Haag, K-State Research and Extension Northwest Area Crops and Soil Specialist, at 785-462-6281 or lhaag@ksu.edu.
6. Prescribed Burning Workshops scheduled for 2017

The first joint agency prescribed burning workshop for 2017 was held January 11 in Marysville. Seven more workshops are planned at this time with the possibility of more upon request.

The agencies involved include K-State Research and Extension, USDA-NRCS, USDA-FSA, Kansas Department of Wildlife, Parks & Tourism, and the National Weather Service. Each workshop lasts about 4 hours. Topics include, reasons for burning, regulations, weather considerations, liability, burn contractors, equipment and crew, hazards, fuels, firebreaks, fire types and behavior, ignition techniques, and burn plans. Attendees have the opportunity to talk through specific burn scenarios with the presenters.

Contact Walt Fick at 785-532-7223 or wfhick@ksu.edu if you would like to host a prescribed burning workshop.

<table>
<thead>
<tr>
<th>Workshop</th>
<th>Date (2017)</th>
<th>Location</th>
<th>Host</th>
<th>Agency</th>
<th>Phone</th>
<th>email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haskell</td>
<td>Jan. 19</td>
<td>Haskell Campus</td>
<td>Megan Fisher</td>
<td>Haskell</td>
<td>785-840-4616</td>
<td>mfisher@haskell.edu</td>
</tr>
<tr>
<td>Greenwood</td>
<td>Jan. 25</td>
<td>Eureka</td>
<td>Ryan Schaub</td>
<td>K-State</td>
<td>620-583-7455</td>
<td>reschaub@ksu.edu</td>
</tr>
<tr>
<td>Kingman</td>
<td>Feb. 3</td>
<td>Kingman</td>
<td>Jake Renner</td>
<td>K-State</td>
<td>620-532-5131</td>
<td>jwrenner@ksu.edu</td>
</tr>
<tr>
<td>Jeffrey Energy</td>
<td>Feb. 16</td>
<td>Jeffrey Energy</td>
<td>J.R. Glenn</td>
<td>Westar</td>
<td>785-575-6518</td>
<td>jr.glenn@westarenergy.com</td>
</tr>
<tr>
<td>Center</td>
<td></td>
<td>Center</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edwards</td>
<td>Feb. 21</td>
<td>Kinsley</td>
<td>Jess Crockford</td>
<td>KPFC</td>
<td>620-664-4882</td>
<td>jbcrock@sbcglobal.net</td>
</tr>
<tr>
<td>Frontier District</td>
<td>Feb. 22</td>
<td>Ottawa</td>
<td>Rod Schaub</td>
<td>K-State</td>
<td>785-828-4438</td>
<td>rschaub@ksu.edu</td>
</tr>
<tr>
<td>Southwind District</td>
<td>March 1</td>
<td>Uniontown</td>
<td>Chris Petty</td>
<td>K-State</td>
<td>620-223-3720</td>
<td>cgp@ksu.edu</td>
</tr>
</tbody>
</table>
Figure 1. Dusty Schwandt, USDA-NRCS, presenting information on equipment and crew considerations at the Marysville Prescribed Burning Workshop. Photo by Walt Fick, K-State Research and Extension.

Walt Fick, Range Management Specialist
whfick@ksu.edu
A series of three K-State Soybean Production Schools will be offered in late January 2017 to provide in-depth training targeted for soybean producers and key stakeholders. The schools will be held at three locations around the state.

The one-day schools will cover a number of issues facing soybean growers: weed control strategies; production practices; nutrient fertility; and insect and disease management.

The dates and locations of the K-State Soybean Production Schools are:

Jan. 24th – Parsons, 25092 Ness Road
Contact information:
Josh Coltrain, Wildcat Extension District, jcoltrain@ksu.edu, 620-724-8233
Jeri Geren, Wildcat Extension District, jlsigle@ksu.edu, 620-331-2690

Jan. 26th – Hesston, Dyck’s Arboretum of the Plains, 177 W Hickory St.
Contact information:
Ryan Flaming, Harvey County Extension, flaming@ksu.edu, 316-284-6930

Jan. 27th – Highland, Highland Community Building, 501 West Av
Contact information:
David Hallauer, Meadowlark Extension District, dhallauer@ksu.edu, 785-863-2212
Matthew Young, Brown County Extension, mayoung@ksu.edu, 785-742-7871

More information on the final program for each Soybean School will be provided in future issues of the Agronomy eUpdate.

Lunch will be provided courtesy of Kansas Soybean Commission. There is no cost to attend, but participants are asked to pre-register by Jan. 19.

Online registration is available at: [K-State Soybean Schools](#)
location you plan to attend.

Ignacio Ciampitti, Crop Production and Cropping Systems Specialist
ciampitti@ksu.edu

Doug Shoup, Southeast Area Crops and Soils Specialist
dshoup@ksu.edu

Stu Duncan, Northeast Area Crops and Soils Specialist
duncan@ksu.edu
A series of four K-State Sorghum Production Schools will be offered in late January and early February 2017 to provide in-depth training targeted for sorghum producers and key stakeholders. The schools will be held at four locations around the state. The one-day schools will cover a number of issues facing sorghum growers: weed control strategies; production practices; nutrient fertility; and insect and disease management.

The dates and locations of the K-State Sorghum Production Schools are:

Jan. 31st – Colby: City Limits Convention Center, 2227 S Range Ave
Kurt Sexton, Thomas Co. Extension, kurtsexton@ksu.edu, 785-460-4582

Feb. 1st – Wichita: Sedgwick Co. Extension Center, 7001 W 21st St N
Zach Simon, Sedgwick Co. Extension, zsimon@ksu.edu, 316-660-0100

Feb. 2nd – Concordia: Cloud County Community College, 2221 Campus Drive
Kim Kohls, River Valley Extension District, kclarson@ksu.edu, 785-243-8185

Feb. 3rd – Iola Riverside Park New Community Building, 600 S. State St
Carla Nemecek, Southwind Extension District, cnemecek@ksu.edu, 620-365-2242

More information on the final program for each Sorghum School will be provided in future issues of the Agronomy eUpdate.

Lunch will be provided courtesy of Kansas Grain Sorghum Commission. There is no cost to attend, but participants are asked to pre-register by Jan. 27. Online registration is available at: K-State Sorghum Schools

You can also preregister by emailing or calling the nearest local Research and Extension office for the location you plan to attend.

Ignacio Ciampitti, Cropping Systems Specialist
ciampitti@ksu.edu
Western Kansas Forage Conference planned Feb. 20 in Larned

Jeff Rasawehr, of Celina, Ohio, and co-founder of Cover Crop Ranch, will present “Making a Cover Crop Your Most Valued Crop” at the Western Kansas Forage Conference on Feb. 20.

Sponsored by K-State Research and Extension and the Kansas Forage and Grassland Council, the conference will be at the J.A. Haas Building, 400 E. 18th St. in Larned, Kansas. Registration begins at 8:30 a.m., with the program from 9 a.m. - 3 p.m.

Cover Crop Ranch is a network of farms in Michigan and Ohio using sustainable farming practices of no-till, cover crops and a system called mob grazing to produce meat. Mob grazing involves moving cattle at least daily between small enclosures and split by electric fences. The plants in the enclosure are eaten, walked on and trampled, then allowed to rest for 60-120 days or more.

Rasawehr will share his knowledge and experience in using cover crops and making them valuable in a crop production system.

Other conference speakers and topics include:

- Soil Management with Cover Crops – DeAnn Presley, K-State soil management specialist
- What Are We Learning from Integrating a Cover Crop into our Production Practice? – Dale Younker, U.S. Department of Agriculture soil health specialist
- Pasture Weed Management – Walt Fick, K-State range scientist
- Kansas Forage and Grassland Council Update – Mark Jensen, KSFGC board member
- Animal Health Concerns When Grazing Cover Crops – Jaymelynn Farney, K-State animal scientist
- Pasture Risk Insurance – Monte Vandeveer, K-State agricultural economist
- Producer Panel

Registration is requested by Feb. 10. Lunch is included in the registration fee, which is $25 for KSFGC members and $55 for non-members. Online registration and more information are available at www.southwest.ksu.edu. More information is available by contacting Foster at 620-276-8286 or anserdj@ksu.edu.

A.J Foster, Southwest Area Crops and Soils Specialist
anserdj@ksu.edu
10. Kansas weather summary for 2016: Wet to dry

At the start of 2016 only two percent of the state was in any drought category, and that category was just “abnormally dry.” At the middle of September, the state was drought-free. However, a dry pattern developed after that time. With much-below-normal precipitation in September, abnormally dry conditions developed in southwest Kansas. The dry pattern continued and by the end of December almost 14 percent of the state, mainly in the Southwestern Division, had degraded to “severe drought” conditions. Conditions from abnormally dry to moderate drought expanded across much of the state. By the end of the year, only 17 percent of the state remains drought-free. Despite the short-term dryness, this year ranked as the 27th wettest since 1895.

Statewide average precipitation was below normal for the first 3 months, but switched to a wetter pattern in April. By May, only the East Central and Southeast Divisions were below average for the year-to-date. The Southwestern Division averaged 5.56 inches in April or 3.5 times the normal for the month. A wetter-than-average pattern in the late summer (August-September) allowed for drought conditions to disappear. However, the year ended on a dry note, which started in September in the southwest, and progressed to the rest of the state from October through December. December statewide average precipitation was 0.56 inches, just above half of the normal December total.

The greatest annual total for the year at a National Weather Service Cooperative station was 56.7 inches at Haysville 3SE in Sedgwick County. The greatest annual total for a CoCoRaHS station was 60.73 inches at Derby 2.9 N, also in Sedgwick County. The driest reporting station was 15.16 inches at Mingo 6SE in Thomas County. The greatest 24-hour precipitation total reported at a CoCoRaHS station was 9.32 inches at Clearwater 3.9 NNE in Sedgwick County on September 9th. The greatest 24-hour precipitation total reported at a NWS station was 8.31 inches reported at Hiawatha 9ESE in Brown County, on September 14th.
Snow was not much of a factor in 2016. The greatest total for the year was 25.8 inches at Goodland Renner in Sherman County. Over half of that came in February. December provided a secondary round of snow across much of the northern half of the state. The biggest impact from that event was to provide some insulating effect in advance of the extremely cold air that followed the snow system. There was a tie for the greatest 24-hour total with 15 inches reported at both Selden 11NW (Decatur County) and Atwood 8SSE (Rawlins County) on February 2nd. The state average annual snowfall for 2016 was 6.6 inches, below last year’s average of 8.6 inches, and well below 2014’s average of more than 21 inches. The greatest snowfall totals were seen in the Northwestern Division, while several stations reported no snow at all in 2016. In the eastern third of the state, much of the moisture that ended the year came as rain, not snow.
Temperatures averaged above normal for the year. The statewide average temperature in 2016 was 56.6 degrees F, which places it as the 9th warmest on record. Only May and December averaged below normal. November had the greatest departure from normal, with an average of 49.4 degrees F, or 6.4 degrees warmer than normal. Temperatures fluctuated considerably during the year, ranging from 110 degrees F at Webster Dam (Rooks County) on July 24th to -24 degrees F at Oakley 19SSW (Logan County), December 20th. Despite being warmer than average, all divisions also had temperatures plunge below zero. Even the Southeast Division recorded sub-zero temperatures, the coldest of which was a -12 degrees F at Smileyberg, Butler County, on December 18th.
The average date for the last spring freeze was April 10th. The earliest start to the growing season was a last freeze on April 2nd at various locations. Syracuse 1NE, Hamilton County, had the latest freezing temperature with 30 degrees F reported on May 3rd. Unlike last year, there were no widespread freezing temperatures after the middle of April. The first fall freeze was mostly seasonal statewide. The average date was October 29th. The earliest first frost was reported on October 5th at Goodland, in Sherman County. The latest first frost was reported at Yates Center on November 19th when
temperatures dropped to 24 degrees F. The average length of the growing season was 201 days. The shortest growing season was at Goodland in Sherman County with 155 days. The stations with the longest growing season were Girard, Crawford County, and Marion Reservoir, Marion County, with a growing season of 230 days.

Drought conditions have shifted over the year, with a short period in which the entire state was drought free. The year started with only a small percent of the state in any form of drought, with only 2 percent in abnormally dry conditions. Despite the overall wetter-than-average year, lack of moisture in the late fall resulted in deterioration. Conditions declined most quickly in the southwest, with severe drought conditions in that part of the state. Currently almost 14 percent of the state is in severe drought. The lack of moisture created problems with establishment of fall-seeded crops, such as winter wheat and winter canola. The continued dry weather, coupled with warmer than normal temperatures in November, resulted in abnormally dry conditions spreading into all areas except for parts of the Central, North Central, and Northeastern Divisions.

Currently, almost 52 percent of the state is in abnormally dry conditions, with an additional 17 percent of the state in moderate drought. Little change is expected during the winter, although the severe drought might continue to push north and eastward. Normal spring rains are critical for any improvement in drought conditions. The El Niño/Southern Oscillation (ENSO) is expected to be in the neutral phase as we move into the spring. This uncertainty gives little confidence in increased moisture across the region, and is expected to continue into the spring. The uncertainty of the continued El Niño provides little guidance for the summer seasonal outlook, although there is an increased chance of above-normal temperatures statewide for the May-to-July period. The Climate Prediction Center’s outlooks don’t indicate how much the temperatures might vary, nor how temperatures would be distributed over the three-month period.
The severe weather season wasn’t as active as 2015, nor as active as the 5-year average. Preliminary numbers from the Storm Prediction Center (SPC) show a total of 99 tornadoes in 2016, compared to a total of 178 tornadoes in 2015, and the five-year average (2008-2012) of 116 tornadoes. In contrast, hail and damaging wind reports were higher in 2016, with 569 hail report versus 519 hail reports in 2015 and 539 damaging wind reports versus 454 reports of damaging winds in 2015. Data on other severe weather events are available from the National Climatic Data Center (NCDC) storm database, but only through September. For the period from January to September, there were 228 flood or flash flood events affecting more than 69 counties. There were two fatalities from the flood events: one in Sedgwick County on August 19th and a second in Norton County on September 3rd. Preliminary damage reports total to property and crops from the floods was more than three million dollars. Generally, these property and crop damage reports are underestimated. In many cases, crop damage isn’t immediately available and fails to be included in the storm total. Likewise, property damage that is from uninsured losses often is also missing in the overall total. There were no excessive heat events reported in 2016. There were 46 winter weather reports through September, with the bulk occurring the first week in February. This total does not include the winter weather with snow and extremely cold temperatures in December.
2016 Annual Summary

Kansas Climate Division Summary

<table>
<thead>
<tr>
<th>Division</th>
<th>Total</th>
<th>Precipitation (inches)</th>
<th>Temperature (°F)</th>
<th>Extremes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2016 Jan through December</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dep. 1</td>
<td>% Normal Ave</td>
<td>Dep. 1</td>
</tr>
<tr>
<td>Northwester</td>
<td>19.42</td>
<td>-1.61</td>
<td>92%</td>
<td>54.1</td>
</tr>
<tr>
<td>West Central</td>
<td>20.73</td>
<td>0.57</td>
<td>103%</td>
<td>55.5</td>
</tr>
<tr>
<td>Southwestern</td>
<td>22.26</td>
<td>2.11</td>
<td>110%</td>
<td>57.5</td>
</tr>
<tr>
<td>North Central</td>
<td>34.09</td>
<td>6.31</td>
<td>123%</td>
<td>56.7</td>
</tr>
<tr>
<td>Central Central</td>
<td>34.09</td>
<td>5.20</td>
<td>118%</td>
<td>57.5</td>
</tr>
</tbody>
</table>

Data is preliminary and subject to revision

From Storm Prediction Center:
<table>
<thead>
<tr>
<th>Region</th>
<th>Median Temperature</th>
<th>Departure</th>
<th>High Temperature</th>
<th>Departure</th>
<th>Low Temperature</th>
<th>Departure</th>
<th>Rainfall</th>
<th>Departure</th>
</tr>
</thead>
<tbody>
<tr>
<td>South Central</td>
<td>37.26</td>
<td>7.80</td>
<td>126%</td>
<td>59.1</td>
<td>2.7</td>
<td>106</td>
<td>-16</td>
<td></td>
</tr>
<tr>
<td>Northeast</td>
<td>38.30</td>
<td>2.84</td>
<td>108%</td>
<td>56.7</td>
<td>3.3</td>
<td>106</td>
<td>-18</td>
<td></td>
</tr>
<tr>
<td>East Central</td>
<td>40.04</td>
<td>1.59</td>
<td>104%</td>
<td>58.2</td>
<td>3.2</td>
<td>106</td>
<td>-15</td>
<td></td>
</tr>
<tr>
<td>Southeast</td>
<td>43.74</td>
<td>2.88</td>
<td>107%</td>
<td>58.9</td>
<td>2.1</td>
<td>104</td>
<td>-12</td>
<td></td>
</tr>
<tr>
<td>State</td>
<td>32.21</td>
<td>3.20</td>
<td>111%</td>
<td>29.1</td>
<td>29.9</td>
<td>110</td>
<td>-24</td>
<td></td>
</tr>
</tbody>
</table>

1. Departure from 1981-2010 normal value
2. State Highest temperature: 110 oF at Webster Dam (Rooks County) on July 24th.
3. State Lowest temperature: -24 oF at Oakley 19SSW (Logan County), December 20th.
4. Greatest Annual rainfall: 56.7 inches at Haysville 3SE, Sedgwick County (NWS); 60.73 inches at Derby 2.9 N, Sedgwick County (CoCoRaHS).

Source: KSU Weather Data Library

Mary Knapp, Weather Data Library
mknapp@ksu.edu